

A systemd primer

Pat Riehecky
Scientific Linux, Fermilab

July 2014

Getting a few things out of the way

● Lots of people feel strongly about systemd
● Systemd in SL

– It is the default init system for SL7

– It is not available for SL5 or SL6

– This follows upstream

A Conceptual Shift

Systemd is a system/service manager
Sysvinit is a 'script runner'

Understanding this difference will help you
understand its behavior

A Conceptual Shift

Systemd is an application and toolkit
Sysvinit is neither

Understanding this difference will help you work
with it, rather than against it.

A Conceptual Shift

Systemd knows about your system
Sysvinit doesn't want to

Understanding this difference will help you
understand its benefits

A Conceptual Shift

Systemd has systemctl
Sysvinit has chkconfig and service

service sshd start == systemctl start sshd.service
chkconfig sshd on == systemctl enable sshd.service

A Conceptual Shift

● Sysvinit
– Run 'start' script on

runlevel

– Run 'stop' script on
runlevel

● Systemd
– Run 'start' command if

needed:
● Required for other service
● Required for 'runlevel'
● Abnormal termination
● Dbus trigger

– Run 'stop' command if
needed:

● Required for 'runlevel'
● Dbus trigger

A Conceptual Shift

● Sysvinit
– Output

● STDOUT
● STDERR
● Maybe syslog too

– Application errors
● Maybe

/var/log/messages

● Systemd
– Output

● Systemd-journal
● And to syslog too

– Application errors
● journalctl -u

sshd.service
● /var/log/mesages

Systemd Benefits

● Service tracking
● Dependency tracking
● Socket tracking
● Automated respawns
● Unified reporting
● Automatic CGroup

assignment

● A fully exposed API
● Simple service

definitions
● Simple parameter

overrides
● Users can make and

manage their own
services

A systemd unit file: sshd.service

[Unit]

Description=OpenSSH server daemon

After=syslog.target network.target
auditd.service

Documentation=man:sshd(8)

[Service]

EnvironmentFile=/etc/sysconfig/sshd

ExecStartPre=/usr/sbin/sshdkeygen

ExecStart=/usr/sbin/sshd D $OPTIONS

ExecReload=/bin/kill HUP $MAINPID

KillMode=process

Restart=onfailure

RestartSec=42s

[Install]

WantedBy=multiuser.target

This does everything
you found in
/etc/init.d/sshd and adds
all the systemd features

A systemd unit file (part 1)

[Unit]

Description=OpenSSH server daemon

After=syslog.target network.target auditd.service

Documentation=man:sshd(8)

● The [unit] section describes the item as a whole
● 'After' is a list of things which must be completed

before this can be started
● 'Documentation' is provided to the admin/user via

– systemctl help sshd.service

A systemd unit file (part 2)
[Service]

EnvironmentFile=/etc/sysconfig/sshd

ExecStartPre=/usr/sbin/sshdkeygen

ExecStart=/usr/sbin/sshd D $OPTIONS

ExecReload=/bin/kill HUP $MAINPID

KillMode=process

Restart=onfailure

RestartSec=42s

● The [service] section describes the attributes of the service
● EnvironmentFile is imported into the runtime environment of the service
● ExecStartPre is run before ExecStart and should return 0 before ExecStart is run
● ExecStart is run to start the service
● ExecReload is run to reload the service's configuration
● KillMode describes how to kill this service's processes
● Restart will run ExecStart if the process exits before being stopped by systemd
● RestartSec is the delay between when the process ends and when it is restarted

A systemd unit file (part 3)

[Install]

WantedBy=multiuser.target

● The [Install] section describes the behavior of the
service, relating to how it is loaded by systemd

● WantedBy lists systemd elements that are 'incomplete'
until they've reviewed this unit.
– So, multi-user.target is 'incomplete' until it has checked to

see if sshd.service is enabled or disabled and acted upon
that information.

Adding/Changing systemd units

Systemd units are defined or inherit settings in a clear work flow

1) /usr/lib/systemd/system/*

2) /run/systemd/system/*

3) /etc/systemd/system/*

So, a service defined at (1) can have its values altered at (2)
and those values can be further altered at (3) with the end result
being any unchanged values from a lower entry kept by the
higher one.

What?

Changing systemd units:
an example

/usr/lib/systemd/service/mariadb.service

[Unit]

Description=MariaDB database server

After=syslog.target network.target

[Service]

Type=simple

User=mysql

Group=mysql

ExecStart=/usr/bin/mysqld_safe

PrivateTmp=true

[Install]

WantedBy=multiuser.target

/etc/systemd/system/mariadb.service

[service]

User=mariadb

Group=nobody

LimitNOFILE=1000

The files in /usr/lib come
from the RPM and will be
replaced.

The files in /etc/systemd
come from you and will
NOT be replaced

Socket Management
● inetd/xinetd are gone

– The only thing they provided apart from sysvinit was a network
socket

● Systemd now provides this via '.socket' units
– Each .socket unit requires a .service unit too

Rsyncd.socket

[Unit]

Description=Rsync Server Socket

Conflicts=rsyncd.service

[Socket]

ListenStream=873

Accept=yes

[Install]

WantedBy=sockets.target

Rsyncd.service

[Unit]

Description=remote file copy program daemon

ConditionPathExists=/etc/rsyncd.conf

[Service]

EnvironmentFile=/etc/sysconfig/rsyncd

ExecStart=/usr/bin/rsync --daemon "$OPTIONS"

[Install]

WantedBy=multi-user.target

Socket Management

To start the rsyncd socket simply run:

systemctl start rsyncd.socket

To start the rsyncd socket on boot run:

systemctl enable rsyncd.socket

Compare to ssh:

systemctl start sshd.service

systemctl enable sshd.service

Non-root service management

● Non-root users can run services
– This has always been true.

● Just pick a port above 1024 and bind.

● Systemd makes this easy
– Uses same config syntax as normal, but different locations

● /usr/lib/systemd/user/*
● /run/systemd/user/*
● /etc/systemd/user/*
● $HOME/.config/systemd/user/*
● $XDG_CONFIG_HOME/systemd/user/*

– Simply set systemctl to 'user' mode
● systemctl --user start someuser-vncserver.service

Reviewing log files

● On SL6, you find the log files and read them
● On SL7, you can simply ask:

– journalctl -u sshd.service

– Want the output in .json format, just add -o json

– journalctl --since yesterday -u sshd.service

– journalctl --until 2014-07-29

– Want to read the log files, they are still there right
where you'd expect

Get A Quick Status

● SL6

service sshd status

openssh-daemon (pid 2715) is running...

Get A Quick Status

● SL7

systemctl status sshd.service

sshd.service - OpenSSH server daemon

 Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled)

 Active: active (running) since Mon 2014-05-12 18:01:24 CDT; 2 months 11 days
ago

 Docs: man:sshd(8)

 Main PID: 1425 (sshd)

 CGroup: /system.slice/sshd.service

 └─1425 /usr/sbin/sshd -D

Jul 23 17:36:39 test.fnal.gov sshd[17902]: Authorized to root, krb5 principal
csieh@FNAL.GOV (krb5_kuserok)

Jul 23 17:36:39 test.fnal.gov sshd[17902]: Accepted gssapi-with-mic for root from
131.225.122.34 port 58024 ssh2

Get A Quick Status

● SL6

chkconfig --list sshd

sshd 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Get A Quick Status

● SL7

systemctl is-enabled sshd.service

enabled

echo $?

0

For more information

● http://www.freedesktop.org/wiki/Software/systemd/

– Especially the 'systemd for Administrators' series

● RHEL7 System's Administrators Guide
– Section III. Infrastructure Services

● https://access.redhat.com/videos/403833
● https://access.redhat.com/videos/898503
● https://access.redhat.com/videos/898473
●

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

